
FishBMS – battery management system
documentation

Table of Contents
Introduction...3
BMS Master board description...5
Measurement board description..9

Cell connection example...9
FishBMS Compact 24s..10
Digital outputs description..11
BMS safety operation (warning and error)...12

BMS safety configuration..12
SD Card operation...13

Downloading and uploading configuration..13
Logging BMS data...13

Android application – FishBMS..14
Communication interface and configuration..15

Simplified MODBUS implementation...15
Read holding registers example..15

Flashing new firmware...23
Application and programming examples..24

Python examples...24
Reading the data out with Python (USB – serial adapter)..24
Configuring new Bluetooth PIN or name (USB – serial adapter)................................24
Using QModBus utility...24
Testing BMS function...24

Last document update: May 11, 2023

1

Introduction
A battery management system (BMS) is any electronic system that manages a
rechargeable battery (cell or battery pack), such as by protecting the battery from
operating outside its Safe Operating Area, monitoring its state, calculating secondary data,
reporting that data, controlling its environment, and balancing it.

BMS Master - parameters

Hardware rev1 rev4

Dimensions 107 x 61 x 10 [mm] 107 x 61 x 10 [mm]

Power supply (no galvanic isolation)
for battery pack with voltage higher than 95V we
recommend external DC/DC to 12V

10 - 14V 30 - 95V (X1 V_in)
10 - 14V (X1 12V)
other option:
10 - 100V (with mod)

Hardware sleep feature no yes

KTY temperature sensor (motor) 1k 1k

UART speed (no galvanic isolation) 115200 bps 115200 bps

CAN bus speed (isolated), optionable 500 kbps 500 kbps

Consumption 1W 0.3W

Consumption with BT and CAN module 1.5W 0.5W

Consumption in suspend mode - < 0.03W

Cell module - parameters

Dimensions 53 x 61 x 10 [mm]

NTC thermistor 10k, beta 3900K

2

BMS Master board description

3

X1 connector (Power, UART, optional CANbus)

pin name description

12V Power +

GND Power GND

TX* Data transceive

RX* Data receive

CANL CAN low

CANH CAN high
* to use external USB to serial adapter it will be necessary to take out the internal HC-06
bluetooth module!

X2 connector (2x digital in, 2x analog in)

pin name description

DI0

DI1

AN0

AN1

X3 connector (speed, power derate, temperature)

pin name description

SPEED Speed input Connect motor hall sensor signal or small relay switch

THRTL PWM output

TEMP Temperature input By default KTY sensor

GND Ground Ground reference (same as battery minus !)

X4 connector (optional external current sensor)

pin name description

12V Power output

5V Power output

V curr Signal output

GND Ground ref.

4

X5 + X6 connector (6x digital output – relay driver)

pin name description

12V Power output

DO0

DO1

DO2

12V

DO3

DO4

DO5

What to do after after first power on (configuration)

Each time any configuration is changed (writing 4000+ registers), BMS will check settings
for possible conflicts and values out of range. If a conflict / out of range values is detected,
error flag “config fail” will be set and value will be changed to fit within range.

If you do not have any configuration prepared (copied from other system) and this is your
first setup we recommend to begin with default settings:

- write 5001 = 28730

and then start to make changes. Factory values are:

 CONFIGLAYER.maxCellVoltage = 3700; //3700mV
 CONFIGLAYER.warningMargin = 300; //300mV
 CONFIGLAYER.minCellVoltage = 2900; //2900mV
 CONFIGLAYER.tempHighLimit = 125; //85 degrees
 CONFIGLAYER.tempLowLimit = 40; //0 degrees
 CONFIGLAYER.balancingDelta = 50; //mV
 CONFIGLAYER.currentSensorSlope = 660; //current sensor range
 CONFIGLAYER.currentSensorOffset = 1650;//1.65V, offset
 CONFIGLAYER.wheelCircumference = 2000; //200mm
 CONFIGLAYER.capacity = 1000; //100Ah
 CONFIGLAYER.numPoles = 100; //number of poles
 CONFIGLAYER.ktyType = 0; //disable motor temperature check
 CONFIGLAYER.ntcBeta = 3800; //
 CONFIGLAYER.outputMode.w = 0; //
 CONFIGLAYER.outputFlags.w = 0; //
 CONFIGLAYER.cfg1.w = 0; //
 CONFIGLAYER.prechargeResistorDivider = 3125;
Cell configuration + temps configuration = all off

Other values will be set to recommended values (power off timeout, CPU reference
voltage, CAN id disable, etc).

5

X7 connector (precharge, direct relay output)

pin name description

B+ cap precharge

B+ rel2 2nd relay NO

B+ rel1 1st relay NO

B+ in common Common contact for both relays

X7 connector is used for precharge and ignition switch by default. It means that REL1 will
be switched on before switching the main contactor in order to precharge controller's
capacitors and will be switched off after the main contactor closes.

Precharge event is controlled with voltage feedback. It means that pin B+ CAP must rise at
least to 90% of battery voltage (measured by cell sum). For configuration of this feature
please check registers 4035 and 4043 (added in FW rev 10).

REL2 output is used as ignition switch. It will turn on after 1 second after successful
precharge.

PROG connector (easily accessible from the bottom of the board)

pin name description

1 PIN has rectangular shape

2

3

4

5

6

Internal connection of REL1 and REL2 with
precharge resistor

Measurement board description

Cell connection example

Unused cells need to be shorted to the highest cell in the module! (in order to power the
measurement module correctly).

7

Module interconnection

8

FishBMS 24s
Please keep in mind, that the first module is not galvanically isolated from the CPU board
and therefore battery minus has to start at module zero!

Module order (hw revision 1)

Order: C, D, A, B

Module order (hw revision 4+)

A, B, C, D

<<add picture>>

9

Digital outputs description
BMS master board has in total of 10 (6+2+1+1) usable digital outputs + onboard beeper
and 3 status LED outputs.

Digital outputs summary

pin name description

DO0 Driver output bistable relay1, aux output

DO1 Driver output bistable relay1, aux output

DO2 Driver output bistable relay2, aux output

DO3 Driver output bistable relay2, aux output

DO4 Driver output aux output

DO5 Driver output aux output

REL1 Relay output NO relay output with B+ IN common

REL2 Relay output NO relay output with B+ IN common

CAP Relay output NO relay output with B+ IN common with precharge
resistor onboard (is using REL2 as an output)

CHARGER- MOSFET output Able to switch up to ~20A in one direction
(recommended 10 – 15A maximum)

THRTL PWM output not implemented yet
- throttle override functions (limit power)
- analog gauge function (SOC)

10

BMS safety operation
Software is equipped with basic safety functions including adjustable limits and timeouts.
Different outputs can be driven according to these states based on the configuration.

4029 R/W [mV] maximum cell voltage

4030 R/W [mV] minimum cell voltage

...

4033 R/W [delta mV] warning margin

4034 R/W [ms] shutdown timeout after error occurs (min 1000 ms)

4035 R/W Output mode

Table 1: BMS safety configuration

Normal = system runs without any error or warning
Warning = system runs and reports warning (digital output, CAN signal...)
Error = system will turn off soon and reports error (digital output, CAN signal...)

Example:

• set 4030 to 3000 mV, set 4033 to 200, set 4034 to 5000 ms

• when one cell drops below 3200 mV warning bit will be set and you may hear
beeper as warning signal every 8 seconds

• appropriate relay driver may be turned on regarding the configuration (mode reg
4035)

• when one cell drops below 3000 mV error bit will be set, and also timeout 5000ms
will start to count down

• if cell rises above 3000 mV during the 5000 ms timeout, error bit will be cleared and
timeout will reset

• when cell again drops below 3000 mV and stays there for the given timeout (5000
ms), after timeout expires BMS will turn off keyswitch in software and starts trying to
turn the high voltage off during next 5000 ms interval. It will turn high voltage off
during that timeout only if current drops below 10A. If current does not drop below
this value during the timeout, BMS will then turn off the contactor anyway
regardless of the current

Temperature warning will be received 5C before the limit (error, check settings in 4017).

11

Illustration 1: Example of operation limits

How SOC meter works
Essential is current measurement - make sure you set correctly registers 4020 (current
sensor slope) and 4019 (zero offset error). Good practice is to compare measured values
with DC clamp multimeter (e.g. 0 amps and 100 amps). Then BMS calculates SOC
percentage based on current value measured using battery capacity (register 4021) from
initial value. Initial value can be set (register 3006) but it is not necessary. If your battery
does not perform full cycles this principle of measuring SOC will get inaccurate and you
will probably want to use drifting corrections. For this enter SOC open cell voltage table -
based on your chemistry and working temperature.

SOC corrections (drifting coefficients, register 4024)

BMS will calculate estimated SOC based on highest cell and lowest cell using an SOC
OCV table (registers 4051 to 4061). Lowest cell estimation will be used if SOC < 50% or
estimated SOC_low < 15%, otherwise SOC_high estimation is used for corrections. If you
do not want to use these correction, just enter 0.

Battery resistance correction 0-15:
0: no correction
1: 0.1mOhm (10A => 0.1mV, 100A => 1mV, e.g. 1000Ah+ battery pack)
2: 0.4mOhm (10A => 0.4mV, 100A => 4mV)
3: 0.9mOhm (10A => 0.9mV, 100A => 9mV)
4: 1.6mOhm (10A => 1.6mV, 100A => 16mV)
5: 2.5mOhm (10A => 2.5mV, 100A => 25mV)
6: 3.6 mOhm (10A => 3.6mV, 100A => 36mV)
7: 4.9 mOhm (10A => 4.9mV, 100A => 49mV)
...
15: 225 mOhm (10A => 22.5mV, 100A => 0.225V)

Drifting speed correction 0-15 (fw17 = slow down 2x vs fw16):
0: no correction
1: 1 < difference < 30% = 0.6% / hour; difference > 30% = 1.2% / hour
...
15: 1 < difference < 30% = 9% / hour; difference > 30% = 18% / hour

Drifting speed acceleration 0-15:
If estimated SOC is higher than 85% or lower than 15%, drifting speed will be multiplied
with this coefficient to reach estimated SOC faster. This is nice option for LiFEPO4 cells
where you cannot adjust SOC in the middle of the curve (because it leads to very
inaccurate estimation) and you correct SOC at the very bottom or very top of the curve.

Reserved: 0-63
Future...

12

Error and warning description
Error value can be read from the register 3001. Before an error bit is set appropriate
warning bit is set (if applicable - e.g. cell undervoltage or overvoltage) in register 3000.

Battery error and warnings:

bit name description

0x01 cellVoltHigh Highest cell voltage exceeded the limit

0x02 cellVoltLow Lowest cell voltage fell below the limit

0x04 cellTempHigh Highest cell temperature exceeded the limit (fw 17+)

0x08 cellTempLow Lowest cell temperature fell under the limit (fw 17+)

0x10 currentOver Discharge limit exceeded

0x20 currentUnder Charge limit exceeded

0x40 voltDiff Cell voltage reaches limits but SOC is too low / high
(gets cleared when SOC reaches 40 / 60%

0x80 isolation

0x0100 communication Error in communication with slave modules

0x0200 socLow

0x0400 motorTempOver Motor temperature exceeded the limit

0x0800 reserved Switch temperature exceeded the limit

0x1000 reserved

0x2000 reserved

0x4000 tempCalc

0x8000 contactor

Table 2: Error & warning bits

BMS errors:

13

bit name description

0x01 contactor

0x02 precharge precharge procecedure was not successful

0x04 systemFail

0x08 eepromFail

0x10 bootFail

0x20 sdCardFail SD card is not present or does not work

0x40 configFail config data were provided in wrong form

0x80 tempCalcMotorFail not possible to calculate motor temperature correctly

0x0100 tempCalcNTCFail not possible to calculate NTC temperature correctly

0x0200

0x0400

0x0800

0x1000

0x2000

0x4000

0x8000

Table 3: BMS errors

14

Output modes FW rev < 10 (do not use, for reference only)
FishBMS has several outputs and it is possible to configure their behaviour according to
desired function (different application - electric bike, solar storage etc.).

Default mode (register 4035 = 0)

Please note that outputs DO2 - DO5 will be updated only if keyswitch is active (high
voltage on state). During idle state they will all be turned off.

• DO0 + DO1 = bistable A (as a main battery switch for discharge), DO0 on, DO1 off

• DO2 = voltage error high (NC), with hysteresis of warning margin

• DO3 = voltage error low (NC), with hysteresis of warning margin

• DO4 = voltage warning high (NO, can be used for “almost full battery light”)

• DO5 = voltage warning low (NO, can be used for “almost empty battery light”)

• REL2 precharge

• REL1 keyswitch feedback with delay 1-2 s (keyswitch B+ for the controller)

Double bistable mode (register 4035 = 1)

Bistable relay A will behave the same way like in the default mode - including precharge
REL2 and delayed keyswitch feedback REL1. The only difference is that it will not turn off
during cell overvoltage error.

Bistable relay B will behave the same way like onboard MOSFET charger input. It will turn
of the relay when cell overvoltage error appears and turn the relay on again when
maximum cell drops below warning voltage level.

• DO0 + DO1 = bistable A (discharge switch only - undervoltage)

• DO2 = voltage warning low (NO, can be used for “almost empty battery light”)

• DO3 + DO4 = bistable B (charge switch only - overvoltage)

• DO5 = voltage warning high (NO, can be used for “almost full battery light”)

• REL2 precharge

• REL1 keyswitch feedback with delay 1-2 s (keyswitch B+ for the controller)

Default mode main switch bistable only (register 4036 = 2)

In this mode the bistable relay A is also kept for its default function - battery disconnect.
DO2, DO3, DO4, DO5 can be set by user.

Custom mode (register 4036 = 65534)

DO0 - DO5 can be used by user.

15

Output modes FW rev >= 10 or higher
register address: 4035

Bit# sum description

bit0 1 DO0 main contactor

bit1 2 DO0 + DO1 discharge bistable relay (pulse output), undervoltage
protection

bit2 4 DO3 + DO4 charge bistable relay (pulse output), overvoltage protection

bit3 8 DO2 voltage warning low (“almost empty battery signal”)

bit4 16 DO5 voltage warning high (“almost full battery signal”)

bit5 32 DO3 voltage error low (“empty battery signal”)

bit6 64 DO4 voltage error high (“full battery signal”)

bit7 128 0: normally open behavior (bit3 to bit6)

1: normally closed behavior (bit3 to bit6)

bit8 256 DO2 on when high voltage warning, goes off minus margin hyst.

bit9 512 DO0 + DO1 discharge and charge bistable relay, undervoltage +
overvoltage protection (pulse outpout), warning margin not necessary for
HV relay activation

bit10 1024 DO5 - ON/OFF with hysteresis (e.g. inverter control)
off condition (remains off minimum 25 seconds = filtration):
1) when low voltage warning occurs immediately OR
2) SOC < low SOC (see 4049)
on condition:
1) lowest cell reaches min cell + 2*margin AND
2) SOC > high SOC (see 4049)

bit11 2048 DO3 off when SOC < 10%, DO3 on SOC > 10%

bit12 4096 FW17+ DO1 pulse width SOC signalization (2x blink = battery is off, 1x
blink = battery is on, duty cycle is SOC %, period about 3.2s)

bit13 8192 DO4 on when SOC > 90%, DO4 off SOC < 90%

bit14 16384 DO1 + DO2 charge bistable relay (pulse output), overvoltage protection

bit15 32768 FW21+ (DO3+DO4) two color LED 100% / 50% / 30% / 15%
(green, green+red, red, blinking red)

16

Output flags FW rev >= 15
register address: 4037

bit# sum description

bit0 1 0: precharge feedback enabled (wait until capacitor voltage > 80%
battery voltage, timeout 5s), percentage can be tuned by changing
register 4043
1: precharge feedback disabled (constant precharge time 3s)

bit1 2 IGNITION output
0: turns off together with HV enable bit (or 1s prior to shutdown timeout)
1: turns off when low voltage warning appears (and back on when min
cell voltage > 2*margin + configured min cell voltage)

bit2 4 Dynamic limit low voltage
0: off
1: error and warning limits for low voltage will be shifted 0.5V up when no
current is flowing. These limits will be dynamically shifted based on
current 0-(4048 max discharge current)

bit3 8

bit4 16

bit5 32

bit6 64

bit7 128

bit8 256

bit9 512

bit10

bit11

bit12

bit13

bit14

bit15 32768 power saving mode:
0: normal operation
1: BMS has been suspended due to low cell voltage (charge cells or
change this config using SD card)

17

Input modes FW rev >= 11
register address: 4036

bit# sum description

bit0-1 0-3 High voltage control (keyswitch)
0: always off (modbus/CAN control only)
1: autostart (see details “autostart” below)
2: keyswitch on when DI0 enabled
3: push long DI0 → on, push long DI0 → off

bit2-3 0-3 0: reserved
1: reserved
2: reserved
3: reserved

bit4 16 limit power (reg 4042) when DI1 activated (pulled down)

bit5 32

bit6 64

bit7 128

bit8

bit9

bit10

bit11

bit12

bit13

bit14

bit15 32768

Autostart

When enabled, high voltage state is switched automatically on after BMS starts. High
voltage state (including precharge) will be activated also after 25s timeout, if high voltage
state was deactivated by an error (e.g. cell undervoltage). Do not use this option if the
battery can stay longer without surveillance or there is nothing which will charge the
battery automatically (e.g. solar charger), because there may be a risk of deep discharge.

18

Power saving mode
- feature to be explained

SD Card operation
FishBMS is equipped with a push-push micro SD card holder to support FAT32 cards up to
8 GB of size (possibly bigger).

Downloading and uploading configuration
SD card allows additional possibility (besides serial / uart / bluetooth interface) to
download and upload BMS configuration. This is usefull when you need to configure
another BMS with exactly the same configuration like the other one.

To download a new configuration, copy the file “__FISH.TXT” to the root of SD card. Insert
the SD card and power on BMS. You should notice that boot phase takes longer (all lights
are on). After new config is successfully saved to the internal EEPROM, you will find a file
“OKFISH.TXT”, which is the original config file, only renamed so it will not be loaded every
time you turn the power on.

Each time BMS starts and SD card is plugged in the system will save current configuration
to the file “SAVEFISH.TXT”. This is useful when you make some changes e.g. with
bluetooth application and want to copy setting to another device.

In case on any error during SD card operation you will find a file “ERROR.TXT” with a
problem description.

Logging BMS data
The ability to log various data automatically to a csv files on a SD card can be enabled in
configuration – a few basic templates and timing are available.

In order to save more complex or customer specific data we can prepare custom firmware
based on requirements.

19

Victron GX interface (CANbus)
Connect BMS CAN to Venus on VE.CAN port (pin 7 CANH = whitebrown, pin 8 CANL =
brown).

FishBMS can be used as a battery monitor for Victron systems. The only thing which
needs to be done is proper wiring of CAN bus lines to a CCGX / Venus GX / Octo GX
device. In software compile option “MODULE_VICTRON_STORAGE” needs to be added.

Register values in 4045 – 4048 must be set according to the battery, also SOC parameters
(OCV table, drifting params) since it is used in CCGX / Venus GX / Octo GX.
- MPPT controllers will listen to charge current limit CCL (Venus firmware at least 2.20)
- if discharge current limit (DCL) is 0, Victron will stop inverting! (in island/off grid mode it
will shut down the power)
- if discharge current limit is small, the rest of power will be taken from the grid
- charge and discharge voltage are not used yet (Feb 2019)
- alarm and warnings will be shown on the display according to BMS errors/warnings
- if no temperature sensors are wired, BMS will send maximum balancer temperature
- Victron now supports not only ESS mode, but others too (Feb 2019)
- make sure DVCC and SVS are enabled

How to check min/max cell from Venus screen? (deprecated, see below)

- make sure you are using BMS firmware 17 or higher
- if state of charge is higher than 50% then Vcell_max = State of health / 20
- if state of charge is lower than 50% then Vcell_min = State of health / 20

Example: State of health 65%, state of charge is 23%, minimum cell voltage is
65/20=3.25V

20

BMS firmware 20+ features

- shows cell min and cell max voltages
- shows cell min and cell max temperatures
- shows total capacity
- shows firmware version in “device” screen
- shows number of battery modules
- fixed battery average temperature
- fixed zero battery charge current when low
voltage error
- battery identification “FishBMS – Xxs” where xx means how many cells is configured
- identification for min/max values where 08m02s means 8th module 2nd cell
- GX firmware 2.50 or higher

21

Android application – FishBMS
Latest development version of app is available online: http://evracing.cz/fishbms

Currently it is possible to monitor following BMS values.

• battery pack voltage
• current (drive & regen)
• minimum and maximum cell voltage
• all cells values (0.1mV resolution)
• cells temperatures (5 channels per measurement module)
• motor temperature
• speed

FishBMS android application can be also used for BMS configuration over MODBUS /
Bluetooth, and offers some more user interface for:

• current sensor calibration (currently done manually via registers)
• speed sensor calibration based on GPS (to be implemented)

In future it may be possible to support custom created views available quickly under
buttons from app main menu. Following views can be used by users now:

• monitor view (power or amps, speed, SOC, motor temp, min max cell)
• cells view (showing all the cells' voltages and temperatures)
• cell & module configuration view (to be implemented)

22

Communication interfaces
X5 connector serves for communication purposes (UART = GND, RX, TX, 3.3V or/and
CAN = CANL, CANH). In addition there is an UART header located directly on board. If
BMS is equipped with bluetooth module (usually HC-06) it is then located in this pin
header and in order to use UART on X5 then the onboard module has to be removed for
correct operation.

UART communication modules

HC-06 bluetooth

- 3.3V power supply

USR TCP232 module

- 3.3V Vcc power supply

PL2303 UART-USB converter

- do not connect
red 5V wire

USR GSM module

- requires 12V power
(cannot be supplied
from BMS!)

23

Protocol details
BMS uses MODBUS protocol over serial/UART for communication and configuration. We
recommend to use supplied Bluetooth module HC-06 and FishBMS Android application to
readout the data and to configure the BMS (latest unstable release is available online
http://evracing.cz/fishbms). It is also possible to connect USB to serial adapter and read
data out directly with a computer (PC, Raspberry etc.).

For reliable battery protection one should understand the basic BMS configuration
(registers 4000 – 4080). The most important is setting cell minimum voltage and cell
maximum voltage. After exceeding these levels the BMS will switch off the main
contactor(s) (meaning change state from hvon to the state idle or sleep). This is an
emergency action to protect the cells and it should not normally happen. Thus BMS will not
automatically turn on (it will require new keyswitch event).

Simplified MODBUS implementation

Please note that only functions 0x03 (read holding registers) and 0x10 (write multiple
registers) are implemented. You can read or write up to 20 registers maximum. To read or
write more registers you need to repeat the command. Default slave address of the BMS
master is 1. In MODBUS all bytes are sent in big endian format except CRC, which has
the opposite (little endian) format.

24

Read holding registers example

01 03 03 E8 00 02 AA 2D (request)

bytes description

01 The slave address (always 01)

03 Function code (03 is for read holding registers function)

03 E8 The data address of the first register to read

00 02 The total number of registers requested.

AA 2D CRC (cyclic redundancy check)

01 03 04 8F B5 8F BA B4 0F (answer)

bytes description

01 The slave address (always 01)

03 Function code (03 is for read holding registers function)

04 The number of data bytes to follow (2 registers x 2 bytes each = 4)

8F B5 The contents of register 1000 (36789 → 3678.9 mV)

8F BA The contents of register 1001 (36794 → 3679.4 mV)

B4 0F CRC (cyclic redundancy check)

25

MODBUS Registers – cell data

Cell data start at register 1000 + given offset. For each additional module just add offset
100*module number starting from zero. If you enter the thermistor Beta value (register
4028 then Analog inputs are recalculated to a temperature in cK units)

Register number = 1000 + module*100 + offset

E.g. register for 7th cell voltage in 5th module is 1506 (= 1000+5*100+6).

#reg offset R/W Description

0 R Cell 1

1 R Cell 2

2 R Cell 3

3 R Cell 4

4 R Cell 5

5 R Cell 6

6 R Cell 7

7 R Cell 8

8 R Cell 9

9 R Cell 10

10 R Cell 11

11 R Cell 12

12 R Analog input[0]

13 R Analog input[1]

14 R Analog input[2]

15 R Analog input[3]

16 R Analog input[4]

17, 18 R Reserved for module configuration

19 R Balancing ON/OFF (bit0 → 1st cell, bit1 → 2nd cell etc.)

26

MODBUS Registers – global data

#reg R/W Description

3000 R Warning

3001 R Error

3002 R Error CPU

3003 R Current [0.1 A] (signed)

3004 R Voltage [0.01 V]

3005 R Speed [0.01 km/h]

3006 R/W SOC [0.01 %]

3007 R Cell minimum voltage [0.1 mV]

3008 R Cell maximum voltage [0.1 mV]

3009 R Motor temperature [cK]

3010 R/W Amperhour counter [0.01 Ah]

3011 R/W Trip [0.01 km]

3012 R/W Throttle override value (255 → throttle fully closed)

3013 R Temperature – minimum cell

3014 R Temperature – maximum cell

3015 R Temperature – average cell

3016 R Temperature – balancer max

3017 R Analog input 1 raw value (motor sensor)

3018 R Analog input 2 raw value (current sensor)

3019 R Analog input 3 raw value (analog input 0)

3020 R Analog input 4 raw value (analog input 1, HW >= rev4 switch NTC)

3021 R Analog input 5 raw value (capacitor voltage)

3022 R Analog input 1 voltage [0.1mV]

3023 R Analog input 2 voltage [0.1mV]

3024 R Analog input 3 voltage [0.1mV]

3025 R Analog input 4 voltage [0.1mV]

3026 R Analog input 5 voltage [0.01V]

3027 R Total number of measurement modules (from config)

3028 R Total number of cells (from config)

3029 R PEC error communication counter (isoSPI)

3030 R PEC percentage (isoSPI communication error rate)

27

3031 R/W
Ah counter positive [0.01 As] (discharge)

3032 R/W

3033 R/W
Ah counter negative [0.01 As] (regen or charge)

3034 R/W

3035 R/W
Trip counter [1 mm]

3036 R/W

3037 R/W
Trip mm counter last

3038 R/W

3039 R/W outputs

3040 R/W
Last As counter

3041 R/W

3042 R/W DistMm

3043 R/W debug

3044 R/W debug

3045 R/W debug

3046 R/W debug

3047 R/W debug

3048 R/W debug

3049 R/W debug

3050 R/W debug

3051 R/W Current limit charge

3052 R/W Current limit discharge

3053 R/W Charge end voltage

3054 R/W Discharge end voltage

3055 R Switch temperature NTC

3056 R Min cell dynamic calculated limit

28

MODBUS Registers – commands

#reg R/W Description

3500 R/W bit0: keyswitch
bit1-15: reserved

3501 R/W BMS testing
bit0: balancing (all on, all off) - write 1
bit1: balancing (knight rider) - write 2
bit2: cycle outputs (DO0-5, rel1, rel2) - write 4
bit3: set outputs off (DO0-5, rel1, rel2) - write 8
bit4: beeper - write 16
bit5: activate charger input - write 32
bit6: deactivate charger input - write 64
bit7: run test mode overdischarge - write 128
bit8: run test mode overcharge - write 256
bit9: run over temperature test - write 512
bit10: run under temperature test - write 1024
bit11-15: reserved

3502 W Turn outputs ON
bit0: DO0
bit1: DO1
bit2: DO2
bit3: DO3
bit4: DO4
bit5: DO5
bit6: rel1 (precharge)
bit7: rel2 (keyswitch)
bit8: chgEn
bit9-15: reserved

3503 W Turn outputs OFF
bit0: DO0
bit1: DO1
bit2: DO2
bit3: DO3
bit4: DO4
bit5: DO5
bit6: rel1 (precharge)
bit7: rel2 (keyswitch)
bit8: chgEn
bit9-15: reserved

3504 R/W set beeper timeout in (6 --> 60ms etc)

3505 R flags

3506 R byte0: inp0, inp1, out0=HV_en, out1, out2, out3, out4, out5

byte1: out6=precharge, out7=ignition

29

MODBUS Registers – configuration (non volatile memory)

#reg R/W Description

4000 R/W Cell configuration registers:

4001 R/W

4002 R/W

4003 R/W

4004 R/W

4005 R/W

4006 R/W

4007 R/W

4008 R/W

4009 R/W

4010 R/W

4011 R/W

4012 R/W Cell module analog input registers (temperatures):

4013 R/W

4014 R/W

4015 R/W

4016 R/W

4017 R/W CellsType (used for SOC calculation)
 0 → Li-ion
 1 → LiFePO4
 2 → LiPO
low byte = temperature max limit (range -40 to 215)
high byte = charge temperature limit (range -40 to 215)
to disable temperature check set charge temp limit to 0 and/or max
limit to 255,
write 255 to disable both limits
write 10330 (=0x285A) 0C charge minimum, 50C maximum

4018 R/W currentSensor
 0 → no current sensor used
 1 → integrated current +-200A sensor used
 2 → external current sensor used

4019 R/W currentSensorOffset (offset in A/D steps, default is 1650)
- zero calibration

30

cell index
11 10 9 8 7 6 5 4 3 2 1 0

4011 4010 4009 4008 4007 4006 4005 4004 4003 4002 4001 4000

m
o

d
u

le

0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0

value 3 3 3 3 3 3 3 3 3 3 3 3

analog input
4 3 2 1 0
4016 4015 4014 4013 4012

m
o

d
u

le

0 1 1 1 1 1
1 1 1 1 1 1
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0

10 0 0 0 0 0
11 0 0 0 0 0
12 0 0 0 0 0
13 0 0 0 0 0
14 0 0 0 0 0
15 0 0 0 0 0

value 3 3 3 3 3

4020 R/W CurrentSensorSlope (100 * conversion value 10*0.66 mV / A)
e.g. 6.6 mV / A → 660, beginning SW rev8 signed value to allow
direction change (-660 ==> 64875)

4021 R/W capacity (0.1Ah (0-6553.5 Ah, default 100Ah → 1000)

4022 R/W WheelCircumference (units mm, default 2000)

4023 R/W numPoles (number of poles times ratio * 100, default 1 → 100)
 e.g. 13 pulses per rev → 1300
 e.g. 4 pulses per rev times 6.35 chain transfer ratio → 2540

4024 R/W FW16+:
1byte = battery resistance [0.1mOhm]
- for battery pack > 100Ah use value < 10
2byte = drift speed (
0 = no drifting / 5s
1 soc difference 10% ==> 0.01%, 100% ==> 0.1%
10 soc difference 10% ==> 0.1%, 100% ==> 1%
max 25
[s] after this timeout SOC will reset based on OCV
(default 10min → 600, off → 65535)
Note: if the chemistry is set to LiFePO4 the reset will happen only
if the highest cell is above 3.3V or lowest cell under 3.1V

4025 R/W [mV] reference voltage for the CPU (defaul 3.3V → 3300)

4026 R/W [ohms] reference resistor size (default 2000)

4027 R/W if KTY sensor is used then > 0 (default 1)

4028 R/W Beta value for thermistor NTC (cell temp sensor, default 3800)

4029 R/W [mV] maximum cell voltage * (error, max 5000mV)

4030 R/W [mV] minimum cell voltage * (error, min 1500mV)

4031 R/W [mV] balancing treshold (default: 3600mV)

4032 R/W [delta mV] balancing difference, highest cell difference allowed
(default 1000mV, min 2mV max 1000mV)

4033 R/W [delta mV] warning margin (is also used as charger connect
hysteresis value)

4034 R/W [ms] shutdown timeout after error occurs (min 1000 ms)

4035 R/W Please refer to the chapter Output modes + output flags 4037

31

4036 R/W Keyswitch combination input (default 3)

1: automatically on after BMS starts
2: keyswitch on when DI0 enabled
3: push long DI0 → on, push long DI0 → off

FW rev >= 10
Input modes

NOTE: if set 0 then it is possible to turn keyswitch on only via
MODBUS reg. 350X (e.g. from app)

4037 R/W Output flags – see above

4038 R/W Beeper config
0: beeper off
>0: beeper on

4039 R/W CAN id - non zero to enable CAN module, speed 500kbps
if CAN X id is set to 2048-4096 then resulting CAN id will be X –
2048 and speed will be set to 250kbps
firmware options:
MODULE_VICTRON_STORAGE
fixed can speed 250kbps only:
CAN_SEND_TCCHARGER = protocol id (1000,1017,1018,1030)

4040 R/W Max motor temperature [cK] (default no limit, recommended 37315
--> 100°C)

4041 R/W Watchdog - reboot BMS after no MODBUS communication [s]
65535 = disabled, minimum 30s

4042 R/W Throttl override mode (0 - 255)

4043 R/W Precharge resistor ratio (default: based on HW revision)

4044 R/W turn off high voltage after timeout when no current
(default 65535 = off)

4045 R/W End of charge limit voltage per cell (must be lower or same as
max cell voltage) [1mV]

4046 R/W Max charge current [0.1A]
is used to calculate register 3050
(will start to decrease its value starting 4045 - 200mV)

4047 R/W Minimum discharge voltage per cell (must be higher or same as
min cell voltage) [1mV]

4048 R/W Max discharge current [0.1A]
is used to calculate register 3051
(will start to decrease its value starting 4046 + 200mV)

4049 R/W set DO5 on when soc > high byte (fw 17+)
clear DO5 on when soc < low byte
- invert when high byte < low byte

32

4050 R/W Max MOSFET switch temperature [cK] (default no limit,
recommended 37315 --> 100°C)

4051-4061 R/W SOC OCV table (0%, 10%, ... 100%)

4062 R/W Proportional (charge PID)

4063 R/W low byte = bottom SOC limit (range 0 to 100)
high byte = top SOC limit (range 0 to 100)
default bottom=10% top=90% (write 0x0A5A=2650)

4064 R/W 1-4bit: paralel pack (total voltage divided by 1-16)
5-12bit: 0.1mV offset each cell (0-25.5mV)
13bit: positive (1) negative (0)
14-16: reserved
Default = 0 (no voltage calibration)

4065 - 4075 -/- reserved

4076 R/W SOC (will be loaded after power off)

4077 R/W
Total distance counter [1 m] (saved each 2 hours)

4078 R/W

4079 R Runtime counter (incremented each 2 hours)

4080 R Serial number
* maximum cell voltage cannot be lower than minimum cell voltage, maximum cell voltage
cannot be higher than 5000mV, minimum cell voltage cannot be lower than 1500mV (if
such a condition occures then default limits will be set per chemistry, or default LiFePO4
limits if chemistry is not set)

MODBUS special registers

#reg R/W Description

5000 R Firmware version

5001 W Write 43690 to reset BMS
Write 28730 to set default settings (fw 17+)
Write 7658 to change BT name (write string to debug regs), fw18+

5002 R Hardware revision

CANbus description
Byte order is motorola. CAN ID can be defined in the register 4039.

RX messages
BMS can receive certain data from another devices so it is possible to change parameters,
activate outputs and so on.

33

BMS modbus RX (message ID +0x00), length 3 - 5

byte 0 Mode 0 read modbus address
1 read response OK
2 read response ERROR
3 write modbus address
4 write response OK
5 write response ERROR
6-255 reserved, custom

uint8

byte 1, 2 Modbus
address

register address uint16

byte 3, 4 Modbus data value uint16

Other modes (not part of generic firmware)

mode = 10: byte 1+2 current (0.1A, signed), 3+4 speed (pulse counter), 5 motortemp (C,
offset -40) compile option = CAN_RECEIVE_MSG10
e.g.: keyswitch on: 03 0d ac 00 01

TX messages

(ID +0x01) reserved

BMS State of charge TX (ID +0x02)

byte 0 SOC State of charge uint8, 0 - 100 %, div 2

byte 1 Temp min Minimum battery temperature uint8, offset -40, -40 - 215 C

byte 2 Temp max Maximum battery temperature uint8, offset -40, -40 - 215 C

byte 3, 4 Cell min Minimal cell voltage uint16, 0-6553.6 mV

byte 5, 6 Cell max Maximal cell voltage uint16, 0-6553.6 mV

byte 7 Watchdog Watchdog counter uint8, 0-255

BMS Power TX (ID +0x03)

byte 0,1 Voltage Sum of all cells uint16, 0-655.36V

byte 2,3 Current Battery current int16, -3276.7 to 3276.8 A

byte 4,5 Error bits See Table 2: Error & warning bits 0 - 65535

byte 6, 7 Bit status Inputs and outputs feedback uint16

34

BMS Speed TX (ID +0x04)

byte 0,1 Speed Calculated speed uint16, 0-655.36 km/h

byte 2,3 Trip Calculated distance uint16, 0-655.35 km

byte 4,5 Capacity Calculated capacity -327.67 to 327.68 Ah

BMS voltages TX (starting ID +0x10 up to number of cells / 4)

byte 0,1 Cell i Cell voltage uint16, 0-6553.6 mV

byte 2,3 Cell i+1 Cell voltage uint16, 0-6553.6 mV

byte 4,5 Cell i+2 Cell voltage uint16, 0-6553.6 mV

byte 6,7 Cell i+3 Cell voltage uint16, 0-6553.6 mV

Not part of generic firmware (compile option = CAN_SEND_VOLTAGES)

BMS temperatures TX (starting ID +0x40 up to number of temperatures / 4)

byte 0,1 Temp j Cell temperature uint16, 0-655.36 cK

byte 2,3 Temp j+1 Cell temperature uint16, 0-655.36 cK

byte 4,5 Temp j+2 Cell temperature uint16, 0-655.36 cK

byte 6,7 Temp j+3 Cell temperature uint16, 0-655.36 cK

Not part of generic firmware (compile option = CAN_SEND_VOLTAGES)

35

Example CAN output
CAN ID was set to 500 (0x1F4) while all cells connected to both first and second
measurement module are enabled.

36

Flashing new firmware
New firmware can be flashed to support new features or fix bugs.

Firmware options

MODULE_VICTRON_STORAGE
- CAN bus communication data for VenusGX / ColorControlGX / OctoGX (set min/max
values in 4045 – 4048 for this purpose)
- DOUT1 (left out from revision 16):
 - activates when battery status changes to HV (contactor closed, high voltage enabled)
 - deactivates when warning low (change to error low?)

POWER_OFF_ENABLE
- self power off function when when lowest cell voltage is lower than minimum cell voltage
for at least 2 hours

CAN_SEND_BASICDATA
- populate battery basic data on CANbus (includes messages: “BMS State of charge TX”,
“BMS Power TX”, “BMS Speed TX”)

CAN_SEND_VOLTAGES
- populate all cell voltages and temperatures on CANbus (includes messages “BMS
voltages TX” and “BMS temperatures TX”)

Upgrade via SD card
This step can be done easily by copying the new firmware to a SD card and rebooting
BMS (power cycle). The firmware file must be named “firmware.hex”.

Upgrade via Android app
The other possibility is to use a FishBMS Android app to download the firmware file into
the BMS. SD card is also required for this approach.

Changelog Software
FW revision 22 (2023)
- charge current limit 10% of nominal if cell temperature is below 3C
- fix recalculate charge voltage limit once when reach 50% SOC
- SOC jump to 1.5% if under low voltage error for more than 10s

FW revision 21 (2021)
- TC charger timeout (connect and disconnect charger based on CAN RX from TCC)
- 4035 bit 14 - enable bistable relay for charger
- disabled runtime counter to prevent SN overflow
- 4039 two color SOC output DO3 & 4

FW revision 20 (2020-05)

37

- added 4063 bottom and top SOC limits (currently used for switching DOs)
- added 4064 voltage calibration (paralel packs)
- changed cell imbalance error to warning
- CAN speed configurable for Victron (250kbps and 500kbps)
- fixed zero charging current constraint when battery fully depleted (in error)
- added dynamic low cell error limit (weak battery or high current drain needed) 500mV up
- Victron protocol update (min/max cell voltage + other values)
- fix min/max temperature output (will use onboard balancing temp sensor if no external)
NOTE before update: check 4039 (must be > 0), 4063 and 4064!

FW revision 19 (2019-07)
- added cell imbalance error, changed discharge current estimation (Victron protocol,
reaching discharge voltage per cell = 0.1A limit, reaching absolute min cell voltage = 0 A
limit = inverter off)

FW revision 18 (2019-04)
- increased interval for testing outputs (+ sound signal)
- added function to change bluetooth dongle name

FW revision 17 (2019-03-24)
- SOC drifting slowed down
- charging control (CHG_EN output) uses “Victron” registers now
- suspend mode enable also if no communication with slaves, removed “__reset.txt” and
added INP1 pull to zero in order to release suspend mode
- Victron protocol update (see “Victron ESS modes” chapter for details)
- CONFIGLAYER.canID added limited CAN speed configration
- added possibility to reset default settings (register 5001)
- use balancer temp if no additional temp sensors are defined
- SOC pulse output signal (can be used for LED)
- added temperature limits for charge and discharge (register 4019)
- use PCB temperature if no sensors attached
- adjusted SOC drifting parameters
- BMS protocol update (shows cell min/max in Venus – using SOH)
- RX buffer overflow fix

FW revision 16 (2018)
- TC charger support over CANbus (must be compiled)
- proportional charge parameter to prevent oscillations is configurable
- balancing temp limit (80C)

38

- limiting PCB temperature (80C) when balancing (activate 1st and/or 2nd channel on MM)
- SOC OCV table and drift configuration (register 4024)
- user defined SOC OCV map (registers 4051 to 4061)
- undervoltage suspend mode (use __reset.txt for suspend mode release)
- remote flashing feature (BMS ready)
- modbus max regs highered to 64

FW revision 15 (2017)
- fixed temperature reference measurement bug (wrong temp reading from MM)
- introduced register 4050 (charge switch temperature limit)
- fixed min voltage and min/max current for Victron interface
- readable HW revision in 5002

FW revision 14 (2017-09-21)
- combined bistable relay output (charge & discharge, details in register 4035)
- bistable switch on and switch off routine changed
- autostart (details in register 4036)
- added CAN matrix to support Victron inverters via CCGX/Venus, not in default FW
- added register 3506 (input and output feedback)
- LTC communication error calculation changed
- unlock sequence to write SN
- turn off charger when switch temp is higher than “maxMotorTemperature”

FW revision 13 (2017-07-16)
- SW pull-up enabled for TX (TX stays high all the time)
- 3.3V turn on order fixed (getting stuck on SPI communication rarely while booting)
- test balancing lights shift timeout fixed

FW revision 12 (2017-06-20)
- added CAN matrix to support Studer inverters via XCOM-CAN, not in default FW

FW revision 11 (2017-05-31)
- HV off timeout (automatic turn off when no current)
- INP1 power limit (throttle override function)

FW revision 10 (2017-04-08)
- changed current sampling frequency (faster), added moving average / kalman filter
- measure NTC temperatures (each measurement module has 5 channels)
- added voltage measurement filtering (200ms acquire time for all voltages)
- fix SOC reset by low voltage
- added support for CPU master revision 3
- precharge feedback voltage condition enabled
- upgraded Android app (temperature support)

FW revision 8 (2017-02-20)
- modbus communication fix (BT getting stuck)

39

Changelog Hardware
HW revision 5 (2018-01), revision 6
- added diode for precharge switch (bugfix)
- I/O connectors reorganized (prevent installation error, more pins added: Vprecharge, 5V,
3.3V, new connector X5)
- RX/TX bugfix for ethernet module (piggy back connection)

HW revision 4 (2017-06), released
- added power off feature (total disconnect)
- step down 3.3V for better efficiency
- separate board for current measurement (+ bistable contact) and charge switch (6x FET)
- precharge + keyswitch relay exchanged for FETs

HW revision 3 (2017-05)
- output drivers made from discrete components and isolated (not continued)
- integrated DC/DC power supply <95V to 12V
- JST-XH connectors from one side

HW revision 2 (2016)
- step down power supply 12-36V to 3.3V
- change the order of measurements modules

HW revision 1 (2015), released
- initial revision

HW revision 0 (2014)
- first prototype revision

40

Application and programming examples

Python3 examples
These examples uses Python 3. You may also need to install python3-serial package and
python3-pymodbus.

Reading the data out with Python (USB – serial adapter)

In following example we read out 12 cell voltages from first module (starting with register
1000).

#!/usr/bin/python3
from pymodbus.client.sync import ModbusSerialClient
client = ModbusSerialClient(method = "rtu", port=”/dev/ttyUSB0, baudrate=115200,
stopbits=1, bytesize=8, timeout=1)
rq = client.read_holding_registers(1000,12,unit=1)
print(rq.registers)

Configuring new Bluetooth PIN or name (USB – serial adapter)

Following snippet can be used to reconfigure HC-06 bluetooth module. You only need to
connect the module to an USB – serial adapter using GND, RX, TX and power 3.3V (or 5V
if the BT module can handle it).

#!/usr/bin/python3
import sys
import serial
import time

def writeReadSerial(strtowrite):
 global connection
 print ("Sending: "+strtowrite)
 for char in strtowrite:
 connection.write(char.encode())
 connection.flush()
 output = ""
 print("received: ")
 for i in range(20):
 char = connection.read()
 output += char.decode()
 return (output)

if (len(sys.argv) != 6):
 print("Help:\n\nBAUD1---------1200 \nBAUD2---------2400\nBAUD3---------4800\
nBAUD4---------9600\nBAUD5---------19200\nBAUD6---------38400\nBAUD7---------
57600\nBAUD8---------115200\n")
 sys.exit("Wrong number of arguments. Expecting arguments: PIN NAME USBTTY
BaudOLD BaudNewNum")

PIN=str(sys.argv[1])
NAME=str(sys.argv[2])
DEVICE=str(sys.argv[3])
BAUDOLD=str(sys.argv[4])
BAUD=str(sys.argv[5])

41

connection = serial.Serial(port=DEVICE, baudrate=BAUDOLD,timeout=0.1)
print("connected to "+DEVICE)
print("sending: AT")
print(writeReadSerial("AT+VERSION?"))
print(writeReadSerial("AT+NAME"+NAME))
print(writeReadSerial("AT+PIN"+PIN))
print(writeReadSerial("AT+BAUD"+BAUD))
connection.close()

Using QModBus utility

QModBus utility is available for Windows / Linux / Mac and can be easily use to read out or
configure FishBMS.

Testing BMS function

Following code will test most of the BMS features:

• outputs DO0, DO1, DO2, DO3, DO4, DO5
• outputs rel1, rel2
•

#!/usr/bin/python3

#TODO – put code

42

	Introduction
	BMS Master board description
	What to do after after first power on (configuration)

	Measurement board description
	Cell connection example

	Module interconnection
	FishBMS 24s
	Module order (hw revision 1)
	Module order (hw revision 4+)

	Digital outputs description
	BMS safety operation
	How SOC meter works
	SOC corrections (drifting coefficients, register 4024)

	Error and warning description
	Output modes FW rev < 10 (do not use, for reference only)
	Default mode (register 4035 = 0)
	Double bistable mode (register 4035 = 1)
	Default mode main switch bistable only (register 4036 = 2)
	Custom mode (register 4036 = 65534)

	Output modes FW rev >= 10 or higher
	Output flags FW rev >= 15
	Input modes FW rev >= 11
	Autostart

	Power saving mode
	SD Card operation
	Downloading and uploading configuration
	Logging BMS data
	Victron GX interface (CANbus)
	How to check min/max cell from Venus screen? (deprecated, see below)

	BMS firmware 20+ features
	- shows cell min and cell max voltages - shows cell min and cell max temperatures - shows total capacity - shows firmware version in “device” screen - shows number of battery modules - fixed battery average temperature - fixed zero battery charge current when low voltage error - battery identification “FishBMS – Xxs” where xx means how many cells is configured - identification for min/max values where 08m02s means 8th module 2nd cell - GX firmware 2.50 or higher
	Android application – FishBMS
	Communication interfaces
	UART communication modules
	Protocol details
	Simplified MODBUS implementation
	Read holding registers example

	CANbus description
	RX messages
	TX messages
	Example CAN output

	Flashing new firmware
	Firmware options
	Upgrade via SD card
	Upgrade via Android app
	Changelog Software
	Changelog Hardware

	Application and programming examples
	Python3 examples
	Reading the data out with Python (USB – serial adapter)
	Configuring new Bluetooth PIN or name (USB – serial adapter)
	Using QModBus utility
	Testing BMS function

